Intergrated Circuits report 2

- * 과제는 A4용지에 자필로 작성한뒤 스테이플러로 제본하여 제출해 주시기 바랍니다.
- * 과제는 Intergrated Circuit Design Fourth Edition 기준으로 출제되었습니다.

1.8

Sketch a transistor-level schematic for a compound CMOS logic gate for each of the following functions:

a)
$$Y = \overline{ABC + D}$$

b)
$$Y = (\overline{AB + C}) \cdot \overline{D}$$

c)
$$Y = \overline{AB + C \cdot (A + B)}$$

1.10

Draw a transistor-level schematic for the latch of Figure 1.75.

FIGURE 1.75 Level-sensitive latch stick diagram

1.21

Consider the design of a CMOS compound OR-OR-AND-INVERT (OAI22) gate computing $F = (\overline{A + B}) \cdot (C + \overline{D})$.

- a) sketch a transistor-level schematic
- b) sketch a stick diagram
- c) estimate the area from the stick diagram

2.4

Show that the current through two transistors in series is equal to the current through a single transistor of twice the length if the transistors are well described by the Shock-

ley model. Specifically, show that $I_{DS1} = I_{DS2}$ in Figure 2.32 when the transistors are in their linear region: $V_{DS} < V_{DD} - V_t$, $V_{DD} > V_t$ (this is also true in saturation). Hint: Express the currents of the series transistors in terms of V_1 and solve for V_1 .

FIGURE 2.32 Current in series transistors

2.7

Calculate the diffusion parasitic C_{db} of the drain of a unit-sized contacted nMOS transistor in a 0.6 μ m process when the drain is at 0 and at $V_{DD} = 5$ V. Assume the substrate is grounded. The transistor characteristics are CJ = 0.42 fF/ μ m², MJ = 0.44, CJSW = 0.33 fF/ μ m, MJSW = 0.12, and $\Psi_0 = 0.98$ V at room temperature.

2.17

A novel inverter has the transfer characteristics shown in Figure 2.34. What are the values of V_{IL} , V_{IH} , V_{OL} , and V_{OH} that give best noise margins? What are these high and low noise margins?

FIGURE 2.34
Transfer characteristics

2.21

Suppose $V_{DD} = 1.2 \text{ V}$ and $V_t = 0.4 \text{ V}$. Determine V_{out} in Figure 2.36 for the following. Neglect the body effect.

a)
$$V_{\text{in}} = 0 \text{ V}$$

b)
$$V_{in} = 0.6 \text{ V}$$

c)
$$V_{in} = 0.9 \text{ V}$$

d)
$$V_{in} = 1.2 \text{ V}.$$

FIGURE 2.36 Single pass transistor

3.3

Sketch a 2-input NOR gate with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter. Compute the rising and falling propagation delays of the NOR gate driving b identical NOR gates using the Elmore delay model. Assume that every source or drain has fully contacted diffusion when making your estimate of capacitance.

3.10

An output pad contains a chain of successively larger inverters to drive the (relatively) enormous off-chip capacitance. If the first inverter in the chain has an input capacitance of 20 fF and the off-chip load is 10 pF, how many inverters should be used to drive the load with least delay? Estimate this delay, expressed in FO4 inverter delays.

3.17

Consider a process in which pMOS transistors have three times the effective resistance as nMOS transistors. A unit inverter with equal rising and falling delays in this process is shown in Figure 4.42. Calculate the logical efforts of a 2-input NAND gate and a 2-input NOR gate if they are designed with equal rising and falling delays.

