Integrated Circuits

Chapter 6: Power

Hong Jong-Phil

School of Electrical Engineering Chungbuk National University

Outline

- Power and Energy
- Dynamic Power
- Static Power

Power and Energy

- □ Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- ☐ Instantaneous Power: P(t) =
- \Box Energy: E =
- figural Average Power: $P_{\rm avg} =$

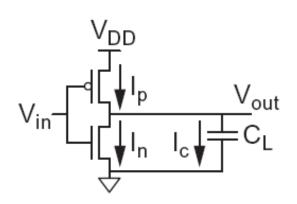
Power in Circuit Elements

$$P_{VDD}(t) = I_{DD}(t)V_{DD}$$

$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_C = \int_0^\infty I(t)V(t)dt = \int_0^\infty C\frac{dV}{dt}V(t)dt$$
$$= C\int_0^{V_C} V(t)dV = \frac{1}{2}CV_C^2$$

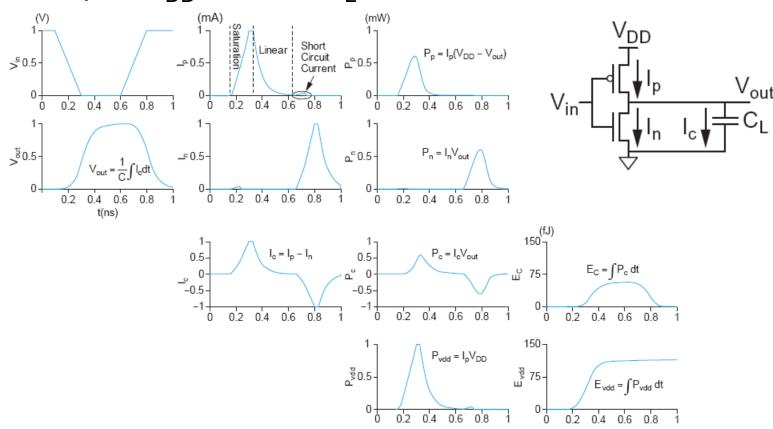
$$\stackrel{+}{V_C} \stackrel{+}{=} C \stackrel{\downarrow}{\downarrow} I_C = C \frac{dV}{dt}$$


Charging a Capacitor

- When the gate output rises
 - Energy stored in capacitor is

$$E_C = \frac{1}{2} C_L V_{DD}^2$$

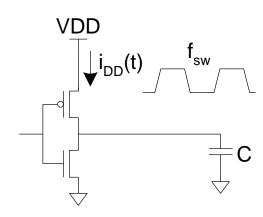
- But energy drawn from the supply is


$$E_{VDD} = \int_{0}^{\infty} I(t)V_{DD}dt = \int_{0}^{\infty} C_{L} \frac{dV}{dt}V_{DD}dt$$
$$= C_{L}V_{DD} \int_{0}^{V_{DD}} dV = C_{L}V_{DD}^{2}$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

Switching Waveforms

 \square Example: $V_{DD} = 1.0 \text{ V}$, $C_1 = 150 \text{ fF}$, f = 1 GHz


Switching Power

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

$$= \frac{V_{DD}}{T} \left[Tf_{\text{sw}} CV_{DD} \right]$$

$$= \frac{V_{DD}}{T} \left[Tf_{\text{sw}} CV_{DD} \right]$$

Activity Factor

- ☐ Suppose the system clock frequency = f
- \Box Let $f_{sw} = \alpha f$, where $\alpha =$ activity factor
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
- Dynamic power:

$$P_{
m switching} =$$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- We will generally ignore this component

Power Dissipation Sources

- ☐ P_{total} =
- \Box Dynamic power: $P_{dynamic} = P_{switching} + P_{shortcircuit}$
 - Switching load capacitances
 - Short-circuit current
- \Box Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power Example

- ☐ 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - $-C = 1 fF/\mu m (gate) + 0.8 fF/\mu m (diffusion)$
- □ Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

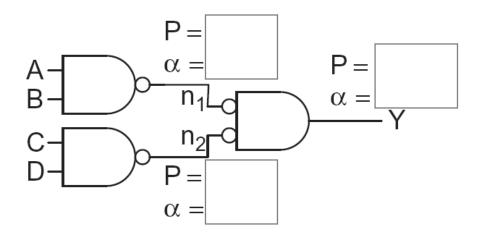
Solution

$$C_{
m logic} =$$
 $C_{
m mem} =$
 $P_{
m dynamic} =$
 $= 6.1 \,
m W$

Dynamic Power Reduction

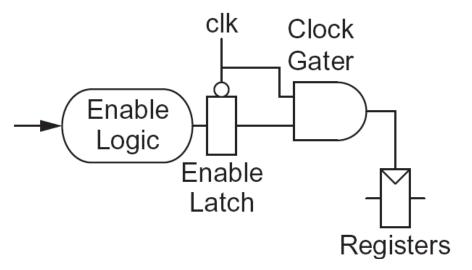
- $P_{\text{switching}} = \alpha C V_{DD}^{2} f$
- ☐ Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation


- - $-\overline{P}_i = 1-P_i$
- \Box $\alpha_i = \overline{P}_i * P_i$
- \Box Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically α ≈ 0.1

Switching Probability

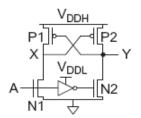
Gate	P _Y
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_{A}\overline{P}_{B}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!A}\overline{P}_{\!B}$
XOR2	$P_{\mathcal{A}}\overline{P}_{B} + \overline{P}_{\mathcal{A}}P_{B}$


Example

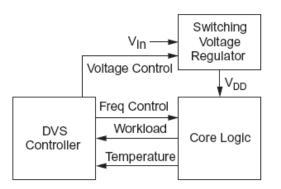
- ☐ A 4-input AND is built out of two levels of gates
- □ Estimate the activity factor at each node if the inputs have P = 0.5

Clock Gating

- ☐ The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity ($\alpha = 1$)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used



Capacitance


- □ Gate capacitance
 - Fewer stages of logic
 - Small gate sizes
- □ Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

- Dynamic Voltage Scaling
 - Adjust V_{DD} and f according to workload

Static Power

- ☐ Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in fight between ON transistors

Static Power Example

- ☐ Revisit power estimation for 1 billion transistor chip
- ☐ Estimate static power consumption
 - Subthreshold leakage
 - Normal V_t : 100 nA/ μ m
 - High V_t : 10 nA/ μ m
 - High Vt used in all memories and in 95% of logic gates
 - Gate leakage 5 nA/μm
 - Junction leakage negligible

Solution

$$W_{\text{normal-V}_{t}} = (50 \times 10^{6})(12\lambda)(0.025 \mu\text{m}/\lambda)(0.05) = 0.75 \times 10^{6} \mu\text{m}$$

$$W_{\text{high-V}_{t}} = \left[(50 \times 10^{6})(12\lambda)(0.95) + (950 \times 10^{6})(4\lambda) \right] (0.025 \mu\text{m}/\lambda) = 109.25 \times 10^{6} \mu\text{m}$$

$$I_{sub} = \begin{bmatrix} I_{gate} = \begin{bmatrix} I_{gate} = I_{gate} \end{bmatrix}$$

$$P_{static} = \begin{bmatrix} I_{gate} = I_{gate} \end{bmatrix}$$

Subthreshold Leakage

 \Box For $V_{ds} > 50 \text{ mV}$

$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

 \Box I_{off} = leakage at V_{gs} = 0, V_{ds} = V_{DD}

Typical values in 65 nm

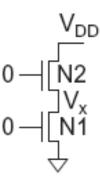
$$I_{off} = 100 \text{ nA/}\mu\text{m}$$
 @ $V_t = 0.3 \text{ V}$
 $I_{off} = 10 \text{ nA/}\mu\text{m}$ @ $V_t = 0.4 \text{ V}$
 $I_{off} = 1 \text{ nA/}\mu\text{m}$ @ $V_t = 0.5 \text{ V}$

$$\eta = 0.1$$

$$k_{v} = 0.1$$

S = 100 mV/decade

Stack Effect


- □ Series OFF transistors have less leakage
 - $-V_x > 0$, so N2 has negative V_{gs}

$$I_{sub} = \underbrace{I_{off} 10^{\frac{\eta(V_x - V_{DD})}{S}}}_{N2} = \underbrace{I_{off} 10^{\frac{-V_x + \eta((V_{DD} - V_x) - V_{DD}) - k_\gamma V_x}{S}}}_{N1}$$

$$V_{x} = \frac{\eta V_{DD}}{1 + 2\eta + k_{\gamma}}$$

$$I_{sub} = I_{off} 10^{\frac{-\eta V_{DD} \left(\frac{1 + \eta + k_{\gamma}}{1 + 2\eta + k_{\gamma}}\right)}{S}} \approx I_{off} 10^{\frac{-\eta V_{DD}}{S}}$$

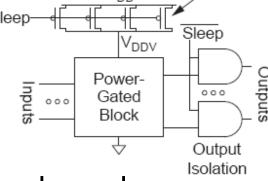
- Leakage through 2-stack reduces ~10x
- Leakage through 3-stack reduces further

Leakage Control

- □ Leakage and delay trade off
 - Aim for low leakage in sleep and low delay in active mode
- □ To reduce leakage:
 - Increase V_t: multiple V_t
 - Use low V_t only in critical circuits
 - Increase V_s: stack effect
 - Input vector control in sleep
 - Decrease V_b
 - Reverse body bias in sleep
 - Or forward body bias in active mode

Gate Leakage

- □ Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes
- □ An order of magnitude less for pMOS than nMOS
- \Box Control leakage in the process using $t_{ox} > 10.5 \text{ Å}$
 - High-k gate dielectrics help
 - Some processes provide multiple t_{ox}
 - e.g. thicker oxide for 3.3 V I/O transistors
- □ Control leakage in circuits by limiting V_{DD}


Junction Leakage

- ☐ From reverse-biased p-n junctions
 - Between diffusion and substrate or well
- □ Ordinary diode leakage is negligible
- ☐ Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V_t transistors where other leakage is small
 - Worst at $V_{db} = V_{DD}$
- ☐ Gate-induced drain leakage (GIDL) exacerbates
 - Worst for $V_{gd} = -V_{DD}$ (or more negative)

Power Gating

- ☐ Turn OFF power to blocks when they are idle to save leakage

 Header Switch Transistors
 - Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic levels to next block

- □ Voltage drop across sleep transistor degrades performance during normal operation
 - Size the transistor wide enough to minimize impact
- □ Switching wide sleep transistor costs dynamic power
 - Only justified when circuit sleeps long enough